Exercise 59

Table 4 shows the input, p, and output, q, for a linear function q. a. Fill in the missing values of the table. b. Write the linear function k.

p	0.5	0.8	12	b
q	400	700	a	$1,000,000$

Table 4

Solution

Begin by finding the equation of the line represented by this table. Use x for the input and y for the output so that the general equation of the line is

$$
y=m x+b .
$$

Two points on this line are $(0.5,400)$ and $(0.8,700)$. The first point says that when $x=0.5$, $y=400$.

$$
400=m(0.5)+b
$$

The second point says that when $x=0.8, y=700$.

$$
700=m(0.8)+b
$$

This is a system of two equations with two unknowns that can be solved.

$$
\left\{\begin{array}{l}
0.5 m+b=400 \\
0.8 m+b=700
\end{array}\right.
$$

Subtract the respective sides of these equations to eliminate b.

$$
0.5 m-0.8 m=400-700 \quad \rightarrow \quad-0.3 m=-300 \quad \rightarrow \quad m=1000
$$

Multiply both sides of the first equation by 8 , multiply both sides of the second equation by -5 ,

$$
\left\{\begin{aligned}
4 m+8 b & =3200 \\
-4 m-5 b & =-3500
\end{aligned}\right.
$$

and add the respective sides to eliminate m.

$$
8 b+(-5 b)=3200+(-3500) \quad \rightarrow \quad 3 b=-300 \quad \rightarrow \quad b=-100
$$

Now that m and b have been solved for, the line is known.

$$
y=1000 x-100
$$

When the input is 12 , the output is

$$
a=1000(12)-100=11900 .
$$

When the output is $1,000,000$, the input is

$$
\begin{gathered}
1000000=1000 b-100 \\
1000100=1000 b \\
b=\frac{1000100}{1000}=1000.1 .
\end{gathered}
$$

